JavaScript Static Analysis
for Evolving Language Specifications

[SWR{HATAE] A=Z7|H 3

Jihyeok Park

PLRG @ KAIST

~epruary 9, 2022

JavaScript Is Everywhere

«— = | moddable
N\
no@dc @os.js

PLRG{Y JavaScript Static Analysis for Evolving Language Specifications 2 /35

2014 2015 2016 2017 2018 2019

lavaScript 3; 2021

" B TypeScript

TypeScript

2014 2015 2016 2017 2018 2019 2020 2021

https://octoverse.github.com/

PLRG,@ JavaScript Static Analysis for Evolving Language Specifications 3/35

Research Group

JavaScript Complex Semantics

function f(x) { return x == Ix: }

Always return false?

PLRG{Y JavaScript Static Analysis for Evolving Language Specifications 4/35

JavaScript Complex Semantics

function f(x) { return x == Ix: }

Always return false?

NO!!
f([1) = [] == !]

—> [] == false
—> +[] == +false
—>@==

—> true

PLRG{Y JavaScript Static Analysis for Evolving Language Specifications 4/35

ECMA-262: ECMAScript Specification

13.2.5.2 Runtime Semantics: Evaluation

ArrayLiteral : [ElementList , Elisionpopt |
1. Let array be ! ArrayCreate(0).

A [iteral 2. Let nextIndex be the result of performing ArrayAccumulation
rrayLiierdlyield, Await]

for ElementList with arguments array and 0.
[Elisiongpe]

3. ReturnlfAbrupt(nextindex).
4. If Elision is present, then

[ElementList[>Yield, ?Await]

l - o . a. Let len be the result of performing Array Accumulation
) EerientLis : -
e e for Elision with arguments array and nextlndex.

b. ReturnIfAbrupt(len).
5. Return array.

0 ————— ————————

The Evaluation algorithm for
the third alternative of ArrayLiteral in ES12

The production of ArrayLiteral in ES12

PLRG@ JavaScript Static Analysis for Evolving Language Specifications 5/35

Research Group

Problem: Manual JavaScript Static Analyzer

AJS ECOOP'10] \
KJS POPL'14] </> .
JSCert [POPL'17] Programs

SAFE [FOOL'12]
' TAJS [SAS'09]
define -
............ "JA\S Sltat'c WALA [ECOOP'12]
H 1YL) JSAl [FsEN4]
Analysis
manual manual Result
analyzer
developer

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 6/35

Problem: Manual JavaScript Static Analyzer

AJS ECOOP'10] \
KJS POPL'14] </> .
JSCert [POPL'17] Programs

SAFE [FOOL'12]
' TAJS [SAS'09]
define -
............ "JA\S Sltat'c WALA [ECOOP'12]
H 1YL) JSAl [FsEN4]
Analysis
manual manual Result
analyzer
developer

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 6/35

Problem: Manual JavaScript Static Analyzer

AJS ECOOP'10] \
KJS POPL'14] </> .
JSCert [POPL'17] Programs

-\ SAFE [FOOL'12]
i TAJS [SAS'09]
define i
ECMA-262 f----=--==--- "Jb\snjtez‘g‘r: WALA [ECOOP'12]
T . JSAI [FSE'14]
Analysis
manual manual Result
analyzer
developer

PLRG{Y JavaScript Static Analysis for Evolving Language Specifications 6/35

Problem: Manual JavaScript Static Analyzer

AJS ECOOP'10] \
KJS POPL'14] </> .
JSCert [POPL'17] Programs

-\ SAFE [FOOL'12]
i TAJS [SAS'09]
define i
ECMA-262 f----=--==--- "Jb\snjtez‘g‘r: WALA [ECOOP'12]
T . JSAI [FSE'14]
Analysis
manual manual Result
analyzer
developer

PLRG{Y JavaScript Static Analysis for Evolving Language Specifications 6/35

Problem: Fast Evolving JavaScript

| JSIL_WALA_JSAI |

1997 - ES
First edition

1999 - ES3 2011 - ES5.1
RegEXx, String, Editorial
Try/catch, etc Changes

1996 1998 2000 2002 2004 2008 2010 2012 2014

2009 - ESS
1998 - ES2 getters/setters,
Editorial strict mode,
changes exceptions, etc

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 7/35

Problem: Fast Evolving JavaScript

| KIS SAFE TAJS| | |2919-ES6
1997 - ES1 | JSIL WALA JSA| : classes, modules, etc.
First edition 2017 - ES8
' object manipulation, etc.
1999 - ES3 2011 - ESS5.1 2019 - ES10
RegEXx, String, Editorial
Try/catch, etc Changes 2021 - ES12

1996 1998 2000 2002 2004 2008 2010 2012 ~ 4 2016 2018 2020 2022

= e TN -

2009 - ES5 ES.Next
1998 - ES2 getters/setters, | 2020 - ES11
Editorial strict mode, ,' 2018 - ES9
changes exceptions, etc 016 - ES7
o destructuring patterns, etc.

| Annual Releases _

ECMAScript 2021 (ES12) - 879 pages

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 8 /35

Main Idea: Deriving Static Analyzer from Spec.

</>
JavaScript
Programs
JS Static
Analyzer
Analysis
Result

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 9/35

Overall Structure

</>
JavaScript
Programs
Derived Static
Analyzer
Analysis
Result

[ASE'20] [In submission

2 | Mechanized
ECMA-262 JISET echanize JSAVER
Specification

1. Mechanized Spec. 3. Derivation of
Extraction Static Analyzers

2. Specification
Validity Check

Conformance Test JEST JSTAR Type Analysis for
Synthesis Specification

[ICSE'21] [ASE 21]
Distinguished Paper!!

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 10/ 35

JISET: JavaScript IR-based Semantics Extraction Toolchain

Jihyeok Park, Jihee Park, Seungmin An, and Sukyoung Ryu
(Published in ASE'20)

o [ASE'20] o

— ﬁo
— 3 ,
ECMA-262 JISET Mechanized
Specification

1. Mechanized Spec.
Extraction

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 11 /35

Motivation: Patterns in Writing Style of ECMA-262

13.2.5.2 Runtime Semantics: Evaluation
ArrayLiteral : [ElementList , Elisiongpt |

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be the result of performing Array Accumulation

for ElementList with arguments a7ray and 0.
3. ReturnIfAbrupt(nextindex).

4. If Elision is present, then

a. Let len be the result of performing Array Accumulation

for Elision with arguments array and nextlndex.
b. ReturnIfAbrupt(len).

5. Return array.

=

The Evaluation algorithm for
the third alternative of ArrayLiteral in ES12

PLRG@ JavaScript Static Analysis for Evolving Language Specifications 12 /35

Research Group

JISET [aAsE'20)

JavaScript IR-based Semantics Extraction Toolchain

JISET

a---------~

JavaScript
Parser
IRES
Functions

.---------'

Mechanized
Specification

|/

ECMA-262

Semantics

PLRG{Y JavaScript Static Analysis for Evolving Language Specifications 13 /35

JISET - Parser Generator (Syntax)

ArrayLiteral [Yield, Await]

[EliSiOT’lOpt]
[ElementList oyie1d, 2await)

[ElementList[?Yield, ?Await]

]

, Elision

opt

]

JavaScript Parser
in Scala

Parsing Expression Grammar
(+ Lookahead Parsing)

C

val ArraylLiteral:
ase List(Yield,

L

~ opt(Elision) ~
~ ElementList(Yield, Await)
~ ElementList(Yield, Await)
~ opt(Elision)~ "]"

ist[Boolean] => LAParser[T] = memo {
Await) =>
= ™ ~* ArraylLiteralo |
~ "]1" 2% ArraylLiterall |
A% ArraylLiteral?

(POPL'04) Bryan Ford, "Parsing Expression Grammars: A Recognition-based Syntactic Foundation”

Prograaming Language ;
Research Group b

JavaScript Static Analysis for Evolving Language Specifications

14 / 35

JISET - Algorithm Compiler (Semantics)

13.2.5.2 Runtime Semantics: Evaluation
ArrayLiteral : [ElementList , Elisiongpt |

1. Let array be ! ArrayCreate(0).

2. Let nextIndex be the result of performing ArrayAccumulation

for ElementList with arguments array and 0.
3. ReturnlfAbrupt(nextindex).

4. If Elision is present, then

a. Let len be the result of performing Array Accumulation

for Elision with arguments array and nextIndex.
b. ReturnlfAbrupt(len).

5. Return array.

IREs

118 Compile Rules for
Steps in Abstract Algorithms

syntax def ArrayLiteral[2].Evaluation(
this, ElementList, Elision
) {
let array = [! (ArrayCreate 0)]
let nextIndex = (ElementList.ArrayAccumulation array 0)
[? nextIndex]
1f (! (= Elision absent)) {
let len = (Elision.ArrayAccumulation array nextIndex)
[? len]

}

return array

}

PLRG{Y JavaScript Static Analysis for Evolving Language Specifications 15/ 35

JISET - Evaluation

mauto m manual
T: Total L: Core Language Semantics B: Built-in Libraries

Version | # Algo.

10,471 / 10,982 (95.35%)
8,041 / 8,415 (95.56%)

ES7 2105 | L
2,430 / 2,567 (94.66%)

11,181 / 11,732 (95.30%)
ES8 2,238 | L 8,453 / 8,811 (95.94%)

2,728 / 2,921 (93.39%)

11,849 / 12,393 (95.61%)
ES9 2,370 | L 8,932 / 9,311 (95.93%)

2,917 / 3,082 (94.65%)

12,022 / 12,569 (95.65%)

ES10 2396 | L 9,073 / 9,456 (94.95%)

B 2,949 / 3,113 (94.73%)
T 12,505 / 13,047 (94.85%)
ES11 2,521 L 9,495 / 9,881 (96.09%)

3,010 / 3,166 (95.07 %)

12,975 / 13,544 (95.80%)
9,717 / 10,136 (95.87%)

ES12 2,640 | L
3,258 / 3,408 (95.60%)

11,834 / 12,378 (95.61%)

Average | 2,378 8,952 / 9,335 (95.90%)

2,882 / 3,043 (94.71%)

PLRG@ JavaScript Static Analysis for Evolving Language Specifications 16 / 35

Research Group

JISET - Evaluation

mauto m manual
T: Total L: Core Language Semantics B: Built-in Libraries

Version | # Algo.

10,471 / 10,982 (95.35%)
8,041 / 8,415 (95.56%)

ES7 2,105 | L

B 2,430 / 2,567 (94.66%)
T 11,181/ 11,732 (95.30%)
ES8 2,238 | L 8,453 / 8,811 (95.94%)
B 2,728 / 2,921 (93.39%)
T 11,849 / 12,393 (95.61%)
ES9 2,370 | L 8,932 / 9,311 (95.93%)
B 2,917 / 3,082 (94.65%)
T 12,022 /12,569 (95.65%) Com plete
ES10 2,396 | L 9,073 / 9,456 (94.95%) ..
B 2,949 / 3,113 (94.73%) Missing Parts
T 12,505 / 13,047 (94.85%)

ES11 2,521 | L 9,495 / 9,881 (96.09%)

3,010 / 3,166 (95.07 %)

12,975 / 13,544 (95.80%) |
9,717 / 10,136 (95.87%) :
3,258 / 3,408 (95.60%) ,

T 11,834 / 12,378 (95.61%)
Average | 2,378 | L 8,952 / 9,335 (95.90%)
B 2,882 / 3,043 (94.71%)

PLRG@ JavaScript Static Analysis for Evolving Language Specifications 16 / 35

JISET - Evaluation

Version

Algo.

mauto m manual
T: Total L: Core Language Semantics B: Built-in Libraries

 Test262
(Official Conformance Tests)

10,471 / 10,982 (95.35%)

8.453 / 8,811 (95.94%) - 18,556 applicable tests

 Parsing tests

2,917 / 3,082 (94.65%) - Passed all 18,556 tests

12,022/ 12,569 95.65%) Complete
9,073 / 9,456 (94.95%) .. ° i
2,949 / 3,113 (94.73%) Missing Parts Evaluation Tests

ES7 2,105 8,041 / 8,415 (95.56%)
2,430 / 2,567 (94.66%)
11,181 / 11,732 (95.30%)
ES8 2,238
2,728 / 2,921 (93.39%)
11,849 / 12,393 (95.61%)

ES9 2,370 8,932 / 9,311 (95.93%)
ES10 2,396
ES11 2,521

Average

Research Group

12,505 / 13,047 (94.85%) ﬁ - Passed all 18,556 tests
9,495 / 9,881 (96.09%)
3,010/ 3,166 (95.07%)

12,975 / 13,544 (95.80%) §
9,717 / 10,136 (95.87%)

3,258 / 3,408 (95.60%)

11,834 / 12,378 (95.61%)
8,952 / 9,335 (95.90%)
2,882 / 3,043 (94.71%)

JavaScript Static Analysis for Evolving Language Specifications 16 / 35

JEST: N+1-version Differential Testing of Both JavaScript Engines

Jihyeok Park, Seungmin An, Dongjun Youn, Gyeongwon Kim, and Sukyoung Ryu
(Published in ICSE'21)

o [ASE'20] o

— ﬁo
— 3 ,
ECMA-262 JISET Mechanized
Specification

1. Mechanized Spec.
Extraction

2. Specification
Validity Check

Conformance Test JEST
Synthesis
[ICSE'21]
Distinguished Paper!!

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 17 / 35

JEST - Conformance with Engines
? Graal

Standard ecma-262 .
11" Edition / June 2020
ECMAScript® 2020
Language Specification

[Eoddable

JavaScript
Engines

ECMA-262

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 18 / 35

JEST - N+1-version Differential Testing

s

Graal

QuickJS
2L [EOd dable
ECMA-262
JavaScript
Engines

PLRG{Y JavaScript Static Analysis for Evolving Language Specifications 19 /35

JEST - N+1-version Differential Testing

ECMA-262

JavaScript
Engines

PLRG{Y JavaScript Static Analysis for Evolving Language Specifications 19 / 35

JEST - N+1-version Differential Testing

ECMA-262

JavaScript
Engines

An engine bug in v

PLRG{Y JavaScript Static Analysis for Evolving Language Specifications 19 / 35

JEST - N+1-version Differential Testing

7

~ecmna

Standard ECMA-262
,,,,,,,,,,,,,,,,,,,,

ECMAScript® 2020
Language Specification

Quickl]S

@)ddabte

JavaScript
Engines

ECMA-262

PLRG{Y JavaScript Static Analysis for Evolving Language Specifications 20 / 35

JEST - N+1-version Differential Testing

7

~ecmna

Standard ECMA-262
,,,,,,,,,,,,,,,,,,,,

ECMAScript® 2020
Language Specification

Quickl]S

@)ddabte

JavaScript
Engines

ECMA-262

PLRG{Y JavaScript Static Analysis for Evolving Language Specifications 20 / 35

JEST - N+1-version Differential Testing

7

Quickl]S

@)ddable

JavaScript
Engines

PLRG{Y JavaScript Static Analysis for Evolving Language Specifications 20 / 35

JEST - N+1-version Differential Testing

7

Quickl]S

Language Specification

@)ddable

JavaScript
Engines

ECMA-262

A specification bug in ECMA-262

An engine bug in Graal

PLRG{Y JavaScript Static Analysis for Evolving Language Specifications 20 / 35

JEST [icse'21] P

" i

JavaScript Engines and Specification Tester 5 Specification :

e , ! Bugs :

| Coverage-guided | : ;

Mutation - g I

S — e . ngine I

i Syntax-directed | . ' Bugs :

| Program Generation } . oo ' e,

st et ot Synthesizer \“ J EST Conformance Bugs

Mechanized Program JavaScript
Specification JS Programs ~ Engines.p

Conformance
Tests

Assertion
- Injector

! Final State-based
' Assertions

cbﬂ

PLRG{Y JavaScript Static Analysis for Evolving Language Specifications 21 /35

JEST - Assertion Injector (7 Kinds)

var X 1 + 23

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 22 / 35

JEST - Assertion Injector (7 Kinds)

var x =1 + 2;

+ $assert.sameValue(x, 3):

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 22 / 35

JEST - Assertion Injector (7 Kinds)

+ // Throw
let x = 42;

1. Exceptions (Exc) function x() {}:

+ // Abort

2. Aborts (Abort) Var x = 42: x++:

var x =1 + 2;

3. Variable Values (Var) + $assert.sameValue(x, 3);

_ . var x = 1t, v = 1}, z { p: X, g Vv };
4. Object Values (0b)) + $assert.sameValue(z.p, X);

+ $assert.sameValue(z.q, VY);

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 23 / 35

JEST - Assertion Injector (7 Kinds)

var x = { p: 42 };

5. Object Properties (Desc)

function f() {}

7. Internal Methods and
Slots (In)

+ + + + +

ELBG@ JavaScript Static Analysis for Evolving Language Specifications 24 / 35

mmmmmmmmmmmmmm

JEST - Evaluation

Engines Exc | Abort | Var | Obj | Desc | Key | In | Total
V8 0 0| 0 O 0 210 2
GraallS 6 0| 0 O 2 81 0| 16
Quick]JS 3 o 1| O 0 210 6
Moddable XS | 12 0 O 0 3 510 20

Total | 21 0] 1] O] 5] 17]0[44

Prograaming Language ;
Research Group b

Name Feature # Assertion Known Created Resolved Existed

ES11-1| Function |12 Key O 2019-02-07 | 2020-04-11 | 429 days
ES11-2 | Function 8 Key O 2015-06-01 | 2020-04-11 | 1,776 days
ES11-3 Loop 1 EXxc O 2017-10-17 | 2020-04-30 | 926 days
ES11-4 | Expression | 4 Abort O 2019-09-27 | 2020-04-23 | 209 days
ES11-5| Expression | 1 Exc O 2015-06-01 | 2020-04-28 | 1,793 days
ES11-6 Object | Exc X 2019-02-07 | 2020-11-05 | 637 days

JavaScript Static Analysis for Evolving Language Specifications

25/ 35

JSTAR: JavaScript Specification Type Analyzer using Refinement

Jihyeok Park, Seungmin An, Wonho Shin, Yusung Sim, and Sukyoung Ryu
(Published in ASE'21)

S [ASE'20] O
Mechanized

| ECMA-262 |—> JISET Spocificat
pecification

1. Mechanized Spec.
Extraction

|
cbﬁ

2. Specification
Validity Check

Conformance Test JEST JSTAR Type Analysis for
Synthesis Specification

[ICSE'21] [ASE'21]
Distinguished Paper!!

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 26 / 35

JSTAR - Types in Specification

20.3.2.28 Math.round (x)
1. Let n be ? ToNumber(x).

2. It n is an integral Number, return 7.
3. If x <0.5 and x >0, return +0.

4. If x <0 and x = -0.5, return -0.

https://github.com/tc39/ecma262/tree/575149cfd//aebcf3al29e165bd89el4caafc3lc

PLRG{Y JavaScript Static Analysis for Evolving Language Specifications 27 / 35

JSTAR - Types in Specification

x: (String v Boolean v Number v Object v ...)

20.3.2.28 Math.round (x|
1. Let n be ? ToNumber(x).
2. It n is an integral Number, return 7.
3. If x <0.5 and x >0, return +0.

4. If x <0 and x = -0.5, return -0.

https://github.com/tc39/ecma262/tree/575149cfd//aebcf3al29e165bd89el4caafc3lc

PLRG{Y JavaScript Static Analysis for Evolving Language Specifications 27 / 35

JSTAR - Types in Specification

x: (String v Boolean v Number v Object v ...)

20.3.2.28 Math.round (x|
L. Let n be ?{ToNumber(x)
2. It n is an integral Number, return 7.

3. If x<0.5and x >0, return +0.

4. If x <0 and x = -0.5, return -0.

ToNumber(x): (Number v Exception)

https://github.com/tc39/ecma262/tree/575149cfd//aebcf3al29e165bd89el4caafc3lc

PLRG{Y JavaScript Static Analysis for Evolving Language Specifications 27 / 35

JSTAR - Types in Specification

x: (String v Boolean v Number v Object v ...)

20.3.2.28 Math.round (x|

11 be 2 ToNumber(x)

ToNumber(x): (Number v Exception) A n: (Number)

2. If nis an integra Number, return 7.
3. If x <0.5 and x >0, return +0.

4. If x <0 and x = -0.5, return -0.

https://github.com/tc39/ecma262/tree/575149cfd//aebcf3al29e165bd89el4caafc3lc

PLRG{Y JavaScript Static Analysis for Evolving Language Specifications 27 / 35

JSTAR - Types in Specification

x: (String v Boolean v Number v Object v ...)

20.3.2.28 Math.round (

ToNumber(x): (Number v Exception) A n: (Number)

\>\

https://github.com/tc39/ecma262/tree/575149cfd//aebcf3al29e165bd89el4caafc3lc

PLRG@ JavaScript Static Analysis for Evolving Language Specifications 27 / 35

Research Group

JSTAR - Types in Specification

x: (String v Boolean v Number v Object v ...)

20.3.2.28 Math.round (

ToNumber(x): (Number v Exception) A n: (Number)

Math. round(true)

">" | Math.round(false)

https://github.com/tc39/ecma262/tree/575149cfd//aebcf3al29e165bd89el4caafc3lc

PLRG@ JavaScript Static Analysis for Evolving Language Specifications 27 / 35

Research Group

JSTAR - Types in Specification

x: (String v Boolean v Number v Object v ...)

20.3.2.28 Math.round (

ToNumber(x): (Number v Exception) A n: (Number)

. round(true)
> . round(false)

3. It n< 0.5 and n > 0, return +0.

. round(true)

4. If n< 0 and n =-0.5, return -0. . round(false)

https://github.com/tc39/ecma262/tree/575149cfd//aebcf3al29e165bd89el4caafc3lc

PLRG@ JavaScript Static Analysis for Evolving Language Specifications 27 / 35

Research Group

JSTAR [aAsE'21)

JavaScript Specification Type Analyzer using Refinement

secma

o/
@ | Mechanized Analysis Reference
Specification Initializer Checker

Initial Arity
Abstract State Checker

Assertion
Checker

Type Analysis Operand Specification
Result Checker Bugs

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 28 / 35

Abstract
Transfer Func.

JSTAR - Evaluation

 Type Analysis for 864 versions of ECMA-262

Precision = (# True Bugs) / (# a% ugs)

Checker | Bug Kind no-refine refine A
UnknownVar 17 / 60 17/ 31 / -29
Reference DuplicatedVar 62 / 106 45 / 46 63 /78 46 [/ 47 +17-28 +1/ +1

Arity MissingParam 4/ 4 4/ 4| 4/ 4 4/ 4 / /

Assertion Assertion 4/ 56 4 /56| 4/ 31 4 /31 / -25 [-25
NoNumber 2/ 65 2/ 6 / -59
Operand Abrupt 22/ 113 50 7 43 22 [44 50 733 / -69 10
Total 92 /279 (33.0%) 93 / 157 (59.2%) +1 /-122 (+26.3%)

Name Feature # Checker Created Life Span
ES12-1 Switch 3 | Reference | 2015-09-22 | 1,996 days
ES12-2 Try 3 | Reference | 2015-09-22 | 1,996 days
1
2

ES12-3 | Arguments Reference | 2015-09-22 | 1,996 days
ES12-4 Array Reference | 2015-09-22 | 1,996 days

ES12-5 Async 1 | Reference | 2015-09-22 | 1,996 days
ES12-6 Class 1 | Reference | 2015-09-22 | 1,996 days
ES12-7 Branch 1 | Reference | 2015-09-22 | 1,996 days

ES12-8 | Arguments | 2 Operand 2015-12-16 | 1,910 days

PLRG{Y JavaScript Static Analysis for Evolving Language Specifications 29 / 35

Automatically Deriving JavaScript Static Analyzers from Language Specifications

Jihyeok Park, Seungmin An, and Sukyoung Ryu
(In submission)
</>

JavaScript

Programs

Derived Static
Analyzer
Analysis
Result

[[ASE'20] secna In submission

= %[Mechanized
ECMA-262 JISET echanize JSAVER
Specification

1. Mechanized Spec. 3. Derivation of
Extraction Static Analyzers

2. Specification
Validity Check

Conformance Test JEST JSTAR Type Analysis for
Synthesis Specification

[ICSE'21] [ASE'21]
Distinguished Paper!!

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 30 /35

JSAVER - Meta-Level Static Analysis

Prograaming Language g
Research Group b

-

Specification

of L+
N
-
L+ Program
g

conform

L1-Lo ._
{ Compiler |

Static Analyzer of L1

(

Lo Program

\

J

' L1: source-language
. Lo: target-language

~

_

~
LS Static Analyzer

of Lo

compiler-based approach (existing)

JavaScript Static Analysis for Evolving Language Specifications

31/35

JSAVER - Meta-Level Static Analysis

Prograaming Language g
Research Group b

-

Specification
of L+

L+ Program

(

Specification
of L+

L1 Program

~

W,

JavaScript Static Analysis for Evolving Language Specifications

conform

L1-Lo |
i Compiler |

Static Analyzer of L1

(

Lo Program

\

J

' L1: source-language
. Lo: target-language

~

_

of Lo

\

LS Static Analyzer

compiler-based approach (existing)

conform

Static

Analyzer

of L

i L2 Program |
as L+ Interpreter |

r

~

- Static Analyzer

of Lo
i 3 Y ,

interpreter-based approach (ours)

. L1: defined-language
. Lo: defining-language

_

e Analysis Result

)

31/35

JSAVER - Meta-Level Static Analysis

defined-language _
(JavaScript) X | ‘_ y

defining-language
(IREs)

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 32 /35

JSAVER - Meta-Level Static Analysis

AssignmentExpression

LeftHandSideExpression AssignmentExpression
defined-language N | ‘_ Y m .o c .
(JavaScript) IdentifierReference IdentifierReference
Identifier Identifier

defining-language
(IREs)

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 32 /35

JSAVER - Meta-Level Static Analysis

AssignmentExpression

LeftHandSideExpression AssignmentExpression
defined-language N | ‘_ Y m .o c .
(JavaScript) IdentifierReference IdentifierReference
Identifier Identifier

15

syntax def AssignmentExpression[8].Evaluation(
this, LeftHandSideExpression, AssignmentExpression

) |
let lref = (LeftHandSideExpression.Evaluation)

let 1val = [? (GetValue lref)]
(IREs) let lbool = [! (ToBoolean 1lval)]
1T (= 1b00l true) return 1val prrececssscemommensmemmmeon e e
t A mechanized specification from ES12§
| = A JavaScript interpreter ;
= An IRes program

defining-language

PLRG{Y JavaScript Static Analysis for Evolving Language Specifications 32 /35

JSAVER - Meta-Level Static Analysis

AssignmentExpression
g

LeftHandS ideExpregsjan' [AssignmentExpression
defined-language X | ‘ _ ,x" ,:"-
(JavaScript) Idenf ﬁerReference IdentifierReference
Pt Identlﬁer Identifier

let lref = (LeftHandSideExpression.Evaluation)
let 1lval = [? (GetValue 1lref)]

(IRes) let lbool = [! (ToBoolean 1lval)]

1T (= 1b00l true) return 1val prrececssscemommensmemmmeon e e
t A mechanized specification from ES12 §
{ = A JavaScript interpreter
|= An IRes program ;_.

defining-language

PLRG,@ JavaScript Static Analysis for Evolving Language Specmcatlons . 32/

JSAVER In submission

JavaScript Static Analyzer via ECMAScript Representation

A

</>
JavaScript
Programs
JSAVER

IRES JavaScript i Abstract
Functions Parser ’ Syntax Tree
Abstract Initial Analysis
Transfer Func. Abstract State initializer
Analysis
Result

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 33/35

@ecma

JSAVER - Static Analyzer Derivation

OOOOO L L

O </>
% | Mechanized JavaScript
Spec. for ES12 Programs

JSAVER
Analysis
Result

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 34 / 35

JSAVER - Static Analyzer Derivation

secma

Prograaming Language ;
Research Group b

2\

A

O </>
&® | Mechanized JavaScript
Spec. for ES12 Programs

Static Analyzer for ES12

JSAVER | EETT)
Analysis
Result

JavaScript Static Analysis for Evolving Language Specifications

</>
JavaScript
Programs

JSAVER l

Analysis
Result

34 / 35

JSAVER - Evaluation

e Soundness / Precision / Performance
- 18,556 applicable tests in Test262

- 3,903 tests analyzable by all the three

analyzers

Bsound BAunsound [derror

20K -

r_,.—-/'

15K - 9,114

(49.1%)

10K -

H# tests

5K -

4,763
(25,7%)

=7 -----ltllllll/ll’lll/

OK

2014 2016 2018 2020

creation time (year)

(a) Analysis results of TAJS

Research Group

H# tests

TAJS SAFE JSAEesi2 TAJS SAFE JSAEesi2
Avg 85.1% | 89.9% | 99.5% Avg.:| 148 ms | 180 ms | 995 ms
4
- v —--.ﬁ“r._-- 10 -
80 - Y
g 60 - E 3
c < 10
& W7 E
2 -
L 20 - ﬁ
o
0 - | I 10° -

msound @®#unsound [Oerror
20K -
r_,__./'
15K - 8,913
(48.0%)
10K -
W 3,902
~ | (21.0%)
oK - ////// 5,741
e (36.9%)
OK -
2014 2016 2018 2020

creation time (year)

(b) Analysis results of SAFE

JavaScript Static Analysis for Evolving Language Specifications

(a) The analysis precision

tests

(b) The analysis performance

B sound unsound [error

20K -

15K -

10K - 18,556

(100.0%)

5K -

0K -

2014 2016

2018
creation time (year)

2020

(c) Analysis results of JSAgg1,

35/35

</>
JavaScript
Programs

[ASE'20] [In submission

2 | Mechanized
ECMA-262 JISET echanize JSAVER
Specification

1. Mechanized Spec. 3. Derivation of
Extraction Static Analyzers

Derived Static
Analyzer
Analysis

Result

2. Specification
Validity Check

Conformance Test JEST JSTAR Type Analysis for
Synthesis Specification

[ICSE'21] [ASE 21]
Distinguished Paper!!

00 2 ESMeta - es-metafesmeta: ECMAScript Metalanguage for Generation of Language-based Tools

O Search or jump to... Pulls Issues Marketplace Explore

[es-meta/esmeta | Public {2 Pin & Unwatch 3 ~ % Fork 0 W Starred 1

<> Code Issues 11 Pull requests Discussions Actions Projects

¥ main ~ Go to file Add file ~ Code~ About

ECMAScript Metalanguage for
élg- jhnaldo Removed unnecessary leg... - 38 minutes ago L) 233 Generation of Language-based

Tools

BB .github/workfl.. Update ciyml 15 days ago
00 Readme

roject More project settin 20 days ago .
B proj Pro) N9 yS 89 58 BSD-3-Clause License
Src Removed unnecessary legacy files 38 minutes ago vy 1star

tests Removed unnecessary legacy files 38 minutes ago © 3 watching

Y 0 forks
.gitignore Added tests for grammar Stringifi... 15 days ago

Jvmopts Added .jvmopts 14 days ago

Releases
.scalafmt.conf Reformatted code with modified s... 2 days ago

No releases published
LICENSE sbt project setting 21 days ago Create a new release

https://github.com/es-meta/esmeta

Backup Slides

JSTAR - Precision £+ - 1) Type Sensitivity

String,
Number,
BigInt,

ToNumber (x)

Number,
Exception

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 39 / 35

JSTAR - Precision {* - 1) Type Sensitivity
String, Stfing Number Null
Number, « |]

BigInt,

Number Number +0

‘ BigInt

Type
Sensitivity

ToNumber (x)

Number,
Exception

Exception

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 39 /35

JSTAR - Precision @&

refine(le,b)(c?) = refine(e, —b)(c?)

refine(eg | | 61,5)(011)

reflne(eg && €1, o

f

Q

refine(x.Type == Cnormals L

N

refine(x.Type == Cnormals L

L

reflne(x == e, #t

b)(
)(
)(
)(
reflne(x == e, #f)(:
)(
)(oF
)(oF

Q

\/\/\/\/\/\/\/ N——"

L L

reflne(x T, #t

reflne(x T, #f

(7
reflne(e b)(o

/

QA QA QA 9 Q QA

ol Lot ifb

ol Mot if b

oMot ifb

ﬁuai if —b

x Ti Mnormal(T)]
x —> T;é [] {abrupt}]

% — T4 M7l
w%&\@ﬂ

x — 75 11 {7}]
xHTQ\{T’]T’ <: T}

where 0% = refine(e;,b)(c?) for j = 0,1, 7 = [e]’(o*).
and LTﬁJ returns {7} if 7% denotes a singleton type 7, or returns

&, otherwise.

PLRG{ JavaScript Static Analysis for Evolving Language Specifications

number A
boolean v'

1 X humber
boolean v'

- 2) Type Refinement

V I

number A

boo lean v'
string .
40 / 35

JSTAR - Precision @&

refine(le,b)(c?) = refine(e, —b)(c?)

refine(eg | | 61,5)(011)

reflne(eg && €1, o

f

Q
QQQQQQQ

\/\/\/\/\/\/\/ N——"

refine(x.Type == Cnormals L

N

refine(x.Type == Cnormals L

L

reflne(x == e, #t

b)(
)(
)(
)(
reflne(x == e, #f)(:
)(
)(oF
)(oF

Q

L L

reflne(x T, #t

reflne(x T, #f

(7
reflne(e b)(o

(

\

\
(

/

jjI_Icfg
jjI_I(Ii
ﬁI_Icfi
jjI_IUQ

if b
if —b
if b
if —b

x Ti Mnormal(T)]
x —> T;é [{abrupt}]

X > Ti 78]

x = 7\ (7]

% — 12 {7}
xHTQ\{T’]T’ <: T}

where ﬁ:nmfuﬁ@”m@ﬁ)mrj_m)1Tﬁ—ﬂﬂ<¢%
and LTﬁJ returns {7} if 7% denotes a singleton type 7, or returns

&, otherwise.

PLRG{Y JavaScript Static Analysis for Evolving Language Specifications

2) Type Refinement

X1 number v
boolean v'

boolean v
string
40 / 35

JSAVER - AST Sensitivity

AssignmentExpression
LeftHandSideExpression AssignmentExpression
defined-language X | ‘_ A A
(Javascript) IdentifierReference
Identifier
------------------,4'- ’,-------------------

P s 4
PN ’4'
— L

defining-language

return [7?
(IREes) (ResolveBinding
(Identifier.StringValue))]

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 41 /35

JSAVER - AST Sensitivity

AssignmentExpression
LeftHandSideExpression AssignmentExpression
defined-language X | ‘_ y m ..
(JavaScript) IdentifierReference, IdentifierReference

Identifier " @ Identifier

L 2
-
a |

-------------------------4-‘;--,—"---------l'---'----------
"‘ 4" " l'
r“,' "‘¢ " "
syntax def ;ﬁeﬁ%ifiané?erence[Gj syntax'def IdentifierReference[0]

defining-language
(IREs)

return [7?
(ResolveBinding
(Identifier.StringValue))]

return [7?
(ResolveBinding
(Identifier.StringValue))]

this = AST of x

JavaScript Static Analysis for Evolving Language Specifications

this = AST of 'y

42 / 35

JSAVER - AST Sensitivity

defined-language
(JavaScript)

defining-language
(IREs)

--ﬁ---

Fe([ty, - ty]) ={o=(,_C_) €S|
n<kA(m=kVjs-ctxt™(c) = L)A
V1<i<n. ast o js-ctxt’(¢) = t;}

k-callsite sensitivity

PLRG{ JavaScript Static Analysis for Evolving Language Specifications 43 / 35

